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1. INTRODUCTION

After Alexits [6], Leindier [6,7], and Gogoladze [11 investigated
estimates of strong approximation by Fourier series in 1965, G. Freud [8]
raised the corresponding saturation problem in 1969. Study on this topic has
since been carried on over a decade, but it seems that most of the results
obtained are limited to the case of one dimension [9-11]. The saturation
problem in two dimensions was considered in [2].

Let Cz",xz", be the space of continuous functions with period 2n in each
variable. For I(x, y) E Cz",xz"" let Smn(f, x, y) denote the Fourier partial
sums, and Emn(f) = infr III - Tmnll e the best uniform approximation

Inn 21fx2",

of I by double trigonometric polynomials of order m, n. (We use II . II to
denote II . lie henceforth.)

21fX21t

We consider the rectangular strong approximation operator HP,.IN defined
by

\ 1 M N /l/P

H~N(J,X,y)= /(M+ I)(N+ 1) m'2;o n~o ISmiJ,x,y)-/(x,y)I
P

\ '

and the Marcinkiewicz diagonal strong approximation operator hfvN defined
by

hfvN(f,x,y)= lN~ 1 nto ISnn(f,x,y)-/(X,YW!lIP,

wherep> O.

* The author wishes to thank Professor G. G. Lorentz and also the referee for many helpful
suggestions, including a stronger version of the lemma. We also wish to thank Professor P. A.
Tomas for linguistic advice.
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In [I, 4] the following estimates were obtained for these two operators.

\ I M N /IIP

II H~fN(f)11 ~ c /(M + I )(N + I) ];0 h1;o Er:nn(f) \ '

\ I N /I~

II hK'N(f)11 ~ c /N + I h'2;o E~n(f) \ .

(C is used to denote constants with different positive values at different
places, independent of M,N, and f) Of course, IIH~fNll--+O Ilh~NII--+O (as
M, N --+ 0), and the speed of convergence to zero depends on the smoothness
of f These two operators are saturable with saturation degree
(lIM + IIN)'IP and (lIN)'IP, respectively [2].

If we call the collection of functions {f: II H~fN(f)11 = (9 [(I1M + liN) liP] I
the saturation class of H~N' and {f: II h~N(f)11 = (9[(liN) liP]} the saturation
class of h~N' what can we say about functions in these saturation classes?
We obtained the following results [2]:

If f is a saturation function, then the modulus of continuity of f has the
order

w(j, (I' (2) = O(tl IP + (~/P),

=0 ((,log~+(2l0g~),
(I (2

as (I and (2 approaches zero. Here

p> I,

p= I,

0< p < I,

w(J, (" (2) = sup If(x" YI) - f(x2, Y2~
IX,-X21<t,,1 Y'-Y21<t2

x"x2E [0.2,,1. YIoY2E[0.2"j

is the modulus of continuity off
The purpose of this paper is to analyze whether these results can be

improved. In Theorem I, we show that the above results cannot be improved
in the sense of modulus of continuity. In Theorem 2 we discuss differen
tiability properties of functions in saturation classes for 0 < p < I, and
finally in Theorem 3 we prove that these results also cannot be improved.
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2. MAIN RESULTS

THEOREM 1. For each p >0, there exists a function fp(x, y) with the
properties

and

(as M, N -t (0),

( 1 1) [( 1)I/P (1 )llP1
co !p'2""2/1 ~c ¥ + 2" ,

~c [;: +;n l
~ c [21m + ;n j,

provided m, n ~ 4.

if p> 1,

if p = 1,

if 0 < P < 1,

THEOREM 2. Let 0 < p < 1, and lip = r + a, where r> 0 is an integer
and 0 < a::;;; 1. If f(x, y) is a saturation function ofH~N (or h~N)' that is, if

as M,N -t 00,

Then the partial derivatives o'jloxr1 oyrz (r1' r2 ~ 0, r\ + r2 = r) exist and
satisfy for t I' t2 ~ 0

a* 1,

a = 1.

THEOREM 3. Let 0 <p < 1, and lip = r + a, 0 <a ~ 1. If r is even,
then there is a function fp(x, y), such that

l(1 1) lIP]
1/ H:rN(,(,,)/1 =0 M + N '
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and

Ilh~NU;')!I = 0 [ (~ riP J.
but for m ~ 4,

(01 n n) ( 1 r a -=1= 1,w ox' 2m '2m ~ C 2m '

~C (;), a = 1,

(01 n n) ( 1 r a-=l= 1,w oy' 2m '2m ~ C 2m '

~C (;), a = 1.

3. AUXILIARY LEMMAS

Lemma 1 is for the proof of Lemma 2. Lemmas 2 and 3 are preparations
to prove Theorem 2.

LEMMA 1. For any 0 < p < 1 we have

[
E (f) JIIP

4

1/ 1 2m 2m 11 lip

Emm(f) ~::Cr) ~ C (m + 1)2 v~ l<~m ISvl< - fl
P

. ,(3.1)

and hence, iff is a saturation function of H~N'

(3.2)

Proof. Employing the fact E 2m2m(f) ~ 11(1/(m + 1)2) L~:m L;~m

[SVl< - flP4+I-p4!1 using Holder's inequality twice for conjugate numbers
(l/p2, 1/(1 - p2» and (l/p, 1/(1-p», and noticing !I(I/(m + 1)(n + 1»
L~:m L;~m ISvl< - flqll 1lq

~ =? CEmn , we obtain

E 2m2m(f)

~ (m ~ 1)2 1/ [~m Jm ISvl< - fl
P2rL~m l<~m ISvl< - flJ+p

2 r-P2

11
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This is equivalent to the statement of the lemma.

LEMMA I'. For 0 < p < 1, we have

and hence, iff is a saturation function of h~N' we have the inequality

[
E (f) ]

IIP4 ( 1 ) lip
Emm(f) ~::(f) ~em'

This result follows if one uses the estimate E 2m2m(f) ~
111/(m + 1) L:;':m [Svv - f] II, and employs the method of the proof of
Lemma 1.

LEMMA 2. Iff belongs to the saturation class of H~N (or of h~N)' then

(3.3)

Proof For any m, from (3.2)

We divide integers m into two classes. The number m belongs to the first
class, N I' if

(3.4)

(3.5)

and otherwise belongs to the second class, N 2' The integers m of N I form
some disjoint (perhaps infinite) intervals (ml' mn (m 2 , mt),....

For every m in N 2, {E2m2m(f)/E2m+12m+l(f)}llp4 < qlIP\ hence from (3.2)

E 2m2m(f) ~ C2 lipS (21m )liP.
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Next, let mj be the first integer of one of the intervals of N I • Then mj = I
is in Nz(if mj = 1, then E 22 ~ E 11 ~ (2 IIPE 11 )(1/2) IIp = C(1/2)IIP). For every
m in [m j , m;*), by (3.4) and (3.5),

Summarizing, Ezmzm(f) ~ C(1/2m)IIP. We have proved (3.3) if n = 2m. For
an arbitrary n, let 2m ~ n < 2m+ I, then

(
1 ) IIp ( 2 ) IIp ( 1 ) IIp

Enn(f) ~ Ezmzm(f) ~ C 2m ~ C --;z = C --;z .

This proves Lemma 2.

LEMMA 3. Let

(3.6)

and

Umm(j,x, y) = Vzmzm(X, y) - Vzm-lzm-I(f,X, y).

Then we have

(3.7)

Proof

Umm(j, x, Y)\1 ~ II Vzm2m(j, x, y) - f(x, y)\\

+ II Vzm-lzm-I(j, x, y) - f(x, y)ll,

~ 112m~1 :~~ISvv-flll+112m ~+1 F~_IISvv-flll

where the TiJ's are the trigonometric polynomials of best approximation of
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orders i, j. In [31 I have proved the inequality II I:;:k ISvv( g)i II ~ (k + 1) II gil.
This implies

4. PROOFS OF THE THEOREMS

1. Proof of Theorem 1. Let

It is known [91 that the function gp(x) has the properties

00

F(gp, x):= L ISm(gp, x) - gp(x)JP ~ const. and, for 0 < t < 1/24

m=1

1
~ ctlog-,

t

~ ct,

It follows from the above,

p> 1,

p= 1,

O<p<l.

For the same reason

But since

w(fp, t1' t 2 ) ~ max{w(fp, t1' 0), w(fp, 0, t 2 )}

~ !{w(fp, t1' 0) +w(fp, 0, t 2)}

~ !{w(gp, t l ) + w(gp, t 2 )},
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we have

( 1 1) I ( 1)lip (1) lip I
W f;" 2m '2" ~ C I 2m + 2" \'

~C l;: + ;" (,

~ C !2
1m +;" (,

when m, n~ 4. Theorem 1 is established.

p> 1,

p= 1,

0< p < 1,

115

2. Proof of Theorem 2. With Vmm defined by (3.6) Umm(f,x, y)
= V2m2m(f, X, y) - V2n-12m-I(f, X, y). From II V2m2m(f, X, y) - f(x, Y)II =
IIl/(2m+ 1) L:~:~~ ISvv(f, x, y) f(x, Y)III ~ 2/(2m

+
1 + 1)

L:~:~I Evv(f) -+ 0 (for m -+ 00), it follows that V2m2m(f, X, y) -+ f(x, y)
uniformly. Hence, f(x, y) = L:::;'=o Umm(f, x, y), where the series converges
uniformly. Because of Bernstein's inequality and Lemma 3, we have

By Lemma 2, the numerical series L:::;'=o 2mrE2m2m ~ C L:::;'=o 2mr(1/2 m
)IIP

converges. Therefore (o'f)/(oxrl oyrl)(x, y) exists, and L:::;'=o(O'Um)/
(oxr, oyr2 )(x, y) converges uniformly to (o'f)/(ox rl oyrl)(x, y).

Now we try to estimate the modulus of continuity of (o'f)/(ox rl oyrl). For
any 0 < t <1r/2", from Bernstein's inequality, Lemmas 3 and 2, we have

a"* 1,

a = 1.
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W (OX~~yr2' ;n' 0 ) = 0 [ Gnr],
= 0 l;n l

a 'I=- 1,

a = 1.

From the property of modulus of continuity, we have

Similarly,

and then,

a 'I=- 1,

a = 1.

a 'I=- 1,

a = 1,

( OJ ) (OJ ) (OJ )W oxrIOyr2,tl,t2 ~w. Oxr'Oyr2,t1 ,O +w OxrI Oyr2,O,t2

= O(t~ + t2),

= 0 (t 1 log~ +t2 log ~) ,
t 1 t 2

This is the result we required in Theorem 2.

3. Proof of Theorem 3. Assume

00 sin vx 00 sin tty
fix, y) = L V1+1/P + L I+TiP'

v=l u=ltt

since

a 'I=- 1,

a= 1.

O'jp 00 sin vx o'jp 00 sin ttY
-;-r (x, y) = ± L -;;+I, -;-r (x, y) = ± L ----a:t\,
vX v = I V UY u = 1 j.J.
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using the proof of Theorem 1, we see

~ C (2
1m r, a =1= 1,

m
~C 2m ' a= 1,

(8'!p 1 1) ( 1 ) a a =1= 1,w 8y P' 2m '2"' ~ C 2m ,

m
~C 2m ' a = 1,

when m~ 4, and

[ (
1 1 ) l/P]

II H~fN(j;')11 = 0 M + N '

II h~N(fp)11 = 0 [ (~ ) I/p l
Theorem 3 is established.
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