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1. INTRODUCTION

After Alexits [6], Leindler [6,7], and Gogoladze [1] investigated
estimates of strong approximation by Fourier series in 1965, G. Freud |8]
raised the corresponding saturation problem in 1969. Study on this topic has
since been carried on over a decade, but it seems that most of the results
obtained are limited to the case of one dimension [9-11]. The saturation
problem in two dimensions was considered in [2].

Let C,,,,, be the space of continuous functions with period 27 in each
variable. For f(x, y) € C,,,,, let S,,.(f,x, y) denote the Fourier partial
sums, and E, (f)=inf; | f—T,,lc,. ,. the best uniform approximation
of f by double trigonometric polynomials of order m,n. (We use || -| to
denote || - [|¢,  , henceforth.)

We con51der the rectangular strong approximation operator HY%,, defined

by

1 M N 1/p
He(fix, y) = DY |s,,,n(f,x,y>—f(x,y)|”§ ,

M+ DN + 1) 5=o 1=

and the Marcinkiewicz diagonal strong approximation operator k%, defined
by

N 1/p
S (8l ¥) — f, y)v’f :

n=90

Wiai ) = |y

where p > 0.

* The author wishes to thank Professor G. G. Lorentz and also the referee for many helpful
suggestions, including a stronger version of the lemma. We also wish to thank Professor P. A.
Tomas for linguistic advice.
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In [1, 4] the following estimates were obtained for these two operators.

1/p
NN i S, 3 Bl

m=0 h=0
1/p

< C s S E)

(C is used to denote constants with different positive values at different
places, independent of M, N, and f.) Of course, ||H%yl|— 0 || A%y = O (as
M, N - 0), and the speed of convergence to zero depends on the smoothness
of f. These two operators are saturable with saturation degree
(1/M + 1/N)* and (1/N)"7, respectively [2].

If we call the collection of functions {f: || H2, (/)| = 2[(1/M + 1/N)'"]}
the saturation class of H%,, and {f:||A2y(f) = Z[(1/N)""]} the saturation
class of h%,, what can we say about functions in these saturation classes?
We obtained the following results [2]:

If f is a saturation function, then the modulus of continuity of f has the
order

w(f, 1y, )= 0@}” + 137), p>1,

1 1
—O(t log — +t210g~——) p=1

=0(t, + t,), 0<p<l,
as ¢, and ¢, approaches zero. Here

w(f’tl’tz)= sup |f(x1’yl)”'f(x2’y2)1
lxi~x2l €ty 1 y1—¥21 <
x1,x2€(0,2x), y1,y2€[0,27]

is the modulus of continuity of f.

The purpose of this paper is to analyze whether these results can be
improved. In Theorem 1, we show that the above results cannot be improved
in the sense of modulus of continuity. In Theorem 2 we discuss differen-
tiability properties of functions in saturation classes for 0 < p < 1, and
finally in Theorem 3 we prove that these results also cannot be improved.
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2. MAIN RESULTS

THEOREM 1. For each p > 0, there exists a function f(x, y) with the
properties

I ()l = 0 [ (ﬁ + 7:7 )W
1/p (as M, N~ c0),
| A5  = 0 [ (%) ]

and
1 1 - 1 i/p 1 t/p
o gz )2 |lm) +F) | v e
[ m n .
>Cf27+?]’ i p=1,
>C L + ! if 0<p<l
S PRI ¢ P<

provided m,n > 4.

THEOREM 2. Let 0< p< 1, and 1/p=r+ a, where r > 0 is an integer
and 0 < a < 1. If f(x, y) is a saturation function of H%, (or k%), that is, if

1 1

1N =0 | 5+

or ttwrn=o [ (3 )”" ])

Then the partial derivatives d'f/ox™ dy™* (r,, r1, 20, r, +r,=r) exist and
satisfy for t,,t,—0

1/p
) ] as M,N- w,

af a
w (W,tl,t2)20(t7+fz), a+l,

1 1
=0<tllog—t—+tzlogt—), a=1.
1 2

THEOREM 3. Let O0<p< 1, and lfp=r+a, 0<a<g 1 If r is even,
then there is a function f,(x, y), such that

=0 [ (m+3) " |
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and

but for m> 4,

ox 2™’ 2™ 2"
>C(2i",,,—), a=1,

of = (4 1 \¢

(ajszm92m>>c(—2-m_)’ a;él,
>c(—2’%), a=1

3. AUXILIARY LEMMAS

Lemma 1 is for the proof of Lemma 2. Lemmas 2 and 3 are preparations
to prove Theorem 2.

LemMa 1. Forany 0 < p <1 we have

1/p

Ennlf) [—E———"@]/“” o S Sisa-rr]

Emm(.f) v=m u=m

and hence, if f is a saturation function of HY,,,
E /p* 1/p
2m2m(f) ] C [(_;T) ]. (3'2)

Epn(f)
Proof. ‘Emplf)ymg the fact E,,,,(f)<|I(1/(m+1)?) o
[S,. —f17*'77"| using Hélder’s inequality twice for conJugate numbers

(l/P 1/(1—p )) and (1/p, 1/(1—p)), and noticing |/(1/(m + 1)(n + 1))
"l Su. —f1°1* < > CE,,,, we obtain

N

Ennlf) |22l

E2m2m(f)
<o l[E s [£ E sumrre]”
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C 2m  2m p3 ) ,
<(m——+1)2 S g N (o el
v=mu=m
L S s, -l
( + 1) v=m u=m

This is equivalent to the statement of the lemma.

LEmMMA 1’. For 0 < p < 1, we have

E2m m(f) ot 1 a 4
En) [z | <y X 1S

and hence, if f is a saturation function of h%,, we have the inequality

] <)

m

This result follows if one wuses the estimate E,,,, (/)<

I/m+ )X [S,.,—fl, and employs the method of the proof of
Lemma 1.

1/p

Eplf) [

LeMMA 2. If f belongs to the saturation class of H%,y (or of h%,), then

En(f)<C (%)/ (33)

Proof. For any m, from (3.2)

E m+1 m+l(f) I/p“ 1 e
S| el
amam(f)

We divide integers m into two classes. The number m belongs to the first
class, N, if

E ymyn(f)

E2m+l2m+l(f) < <_1.)l/p (3.4)
Eymyn(f) 2/

and otherwise belongs to the second class, N,. The integers m of N, form
some disjoint (perhaps infinite) intervals (m,, m¥), (m,, m¥),....
For every m in N,, {E ynyn(f ) Ems1am ()} 77" < q'/7°, hence from (3.2)

1 1/p
Epmyulf) < C217° (-27) . (3.5)
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Next, let m; be the first integer of one of the intervals of N,. Then m; =1

is in N,(if m;= 1, then E,, < E,,; < (2"7E,)(1/2)"/? = C(1/2)"/7). For every
m in [m;, m¥), by (3.4) and (3.5),

1 1/p 1 1/p
E,my{f)< (W) E,miymi( ) < (Zm m,) E ri-iymi-

1 i 1/p3 1 v 1/p+1/p3 1\
<Cfgw) o () e ()

Summarizing, E,m,=(f) < C(1/2™)"?. We have proved (3.3) if n=2". For
an arbitrary n, let 2™ < n < 2™*%, then

1p 2\ P 1\ VP
Epilf) < Eympnlf) < C <2m ) <C (7) —C (7) .
This proves Lemma 2.
LEmma 3. Let
2m
Vonls %, ¥) =27 Zm S %, ¥)s (3.6)

and
Uplfs %, ¥) = VimgnlX, ¥) = Vam-12mf X5 ¥)-
Then we have
§ U5 % Y| = O(E ymym). 3.7
Proof.

Umm(.f! X, y)” < H V2m2m(f; X y) _f(xv y)”
+ 11V 2m-ram (£, %, ¥) = [ Pl

m

m =+l
< P —
\|2m+1v22m|svv f'“ 2MI+1,,;1 vy f'”
1 am+1
< ' 2" 41 Z “f_ T;‘m+12m+li + ‘Sw(f— Tikmnzmn)”
p=2M

1 il

tomT T ) Y = Thanl +18,,(f = Tham)ll

=am—1

.

where the T75’s are the trigonometric polynomials of best approximation of



114 YANG-CHUN CHANG

orders i, j. In [3] I have proved the inequality ||32%, | S, (I < k + 1) g
This implies

“ Umm(j; X, y)” < CE2"'2’"'

4. PROOFS OF THE THEOREMS

1. Proof of Theorem 1. Let

S5 3) = %) + 8,0 &0 = Y ey

v=1

It is known [9] that the function g,(x) has the properties

F(g,,x) = i |Sm(8,s X) — &,(x)” < const. and, for 0 << 1/2*
m=1
w(g, ) =ct'”, p>1,
> ctlog —i—, p=1,
>ct, O0<p<lL
It follows from the above,

Hﬁm(fp’xa )< HﬁlN(gp’x) + Hﬁm(gp’ y)

1 1 Ve
<2 [37- Flap 0+ 5 Flan ) |

M

11\
LC il —+— .
S (M+N)

For the same reason

1\V?
P2 3)<C ()

But since

max{w(f,, t,,0), w(f,, 0, 2,)}
w(fys 15 0) + 0(f,, 0, 2,)}
w(gp’ tl) + w(gp’ tZ)}’

w(.fp’ tl! t2)>
2
2>

Nl= N
—_—— —_—
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we have

ll/P 1/p
b |G B

|
c?"’
Bl

2 p=1
1
>C > ‘ 0<p<l,

when m, n > 4. Theorem 1 is established.

2. Proof of Theorem 2. With V,, defined by (3.6) U,.(f,x,y)
= Vomnlfs %, V) = Vau-rzm(fs X, ). From || Vomom(f, %, y) = S5, )| =
ly@m+1) S [S.(6x 2 — Sl < @™+ 1)

2UE,(f)=0 (for m— o), it follows that Vimm(f;X, y)- f(x, )
uniformly. Hence, f(x, y) =X %.0 Unn(f X, y), where the series converges
uniformly. Because of Bernstein’s inequality and Lemma 3, we have

r
a — —mm

&xn a r ( y) \ 2™ ” mm(x’ y)” < czmrEzmzm'

By Lemma 2, the numerical series Y. 0_ 2™ E,mm < C 12_, 2™(1/2™)'7
converges. Therefore (97f)/(0x™ oy™)(x, y) exists, and ) X_,(0"U,)/
(@x" @y™)(x, y) converges uniformly to (8°f)/(@x™ dy")(x, y).

Now we try to estimate the modulus of continuity of (¢'f)/(&éx™ &y™). For
any 0 < t < /2", from Bernstein’s inequality, Lemmas 3 and 2, we have

af of
axriay B gy B9 ) '

[s o]

ar+ 1 Umm
axr1+l ayrz

0"Upm

g ox" oy

0

1 n
<C Z 2m(r+l)E 2m+2 v 2ME 2’"2"’;

m= Il+1
1\¢
<C Eﬁ ’ a#'-la

N
1=

[

m m= n+l

£C a=1.

—2_,,’
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Therefore
of oz 1\°
© lmamro)=o @) | -

—0[2"}, a=1.

From the property of modulus of continuity, we have
o'f e
@ (g 1:0) =0 ol

=O<t,logti), a=1.

Similarly,
i
=0@? 1,
<8x" v t’) o) “*
|
=0<tlog~), a=1,
t2
and then,
of of af )
—_— —_—— 0 — 0,
w (axrl ayrz’ tls tz ) < w‘<axr1 ayrz ’ tl ’ ) +w (3)&"' ayrz 2
=0(t5 + t5), a1,

1 1
(t log — +tzlog—) a=1.

This is the result we required in Theorem 2.

3. Proof of Theorem 3. Assume

°° sinvx & sinuy
f(x,y)— -, V1+1/p+ Z 1+1/p°
r=1 u:lﬂ
since
a'f, © sinvx 27, X, sinuy
"(x,y)— £ 3 2 X y)=%

a+l ? r a+l?
r=1 v a u=1 :u
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using the proof of Theorem 1, we see

of, 1 1 o'f, | )
S e ___ 0
“’(ax"z'"’z'")>‘”<ax”2m

2”1
>C—2n179 a:l’
of, 1 1 1 \®
w <3y5’_27’—27)>c (37,,‘) , a#+l,
>C o, a=1,

when m > 4, and

2 =0 [ (57 + i)”"],

M N
I#n =0 | (—}\7)/ |

Theorem 3 is established.
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